Adding OpenAI-Compatible Providers
For providers that follow the OpenAI API format, you can add support via a simple JSON configuration.
Quick Start​
Edit litellm/llms/openai_like/providers.json and add your provider:
{
"your_provider": {
"base_url": "https://api.yourprovider.com/v1",
"api_key_env": "YOUR_PROVIDER_API_KEY"
}
}
That's it! The provider is now available.
Usage​
import litellm
import os
os.environ["YOUR_PROVIDER_API_KEY"] = "your-api-key"
response = litellm.completion(
model="your_provider/model-name",
messages=[{"role": "user", "content": "Hello!"}],
)
Configuration Options​
Required Fields​
base_url: API endpoint (e.g.,https://api.provider.com/v1)api_key_env: Environment variable name for the API key
Optional Fields​
{
"your_provider": {
"base_url": "https://api.yourprovider.com/v1",
"api_key_env": "YOUR_PROVIDER_API_KEY",
// Override base_url via environment variable
"api_base_env": "YOUR_PROVIDER_API_BASE",
// Base class: "openai_gpt" (default) or "openai_like"
"base_class": "openai_gpt",
// Map parameter names
"param_mappings": {
"max_completion_tokens": "max_tokens"
},
// Parameter constraints
"constraints": {
"temperature_max": 1.0,
"temperature_min": 0.0
},
// Special handling flags
"special_handling": {
"convert_content_list_to_string": true
}
}
}
Examples​
Simple Provider (Fully OpenAI-Compatible)​
{
"hyperbolic": {
"base_url": "https://api.hyperbolic.xyz/v1",
"api_key_env": "HYPERBOLIC_API_KEY"
}
}
Provider with Parameter Mapping​
{
"publicai": {
"base_url": "https://api.publicai.co/v1",
"api_key_env": "PUBLICAI_API_KEY",
"param_mappings": {
"max_completion_tokens": "max_tokens"
}
}
}
Provider with Temperature Constraints​
{
"custom_provider": {
"base_url": "https://api.custom.com/v1",
"api_key_env": "CUSTOM_API_KEY",
"constraints": {
"temperature_max": 1.0,
"temperature_min": 0.1
}
}
}
When to Use Python Instead​
Use a Python config class if you need:
- Custom authentication (OAuth, token rotation)
- Complex request/response transformations
- Provider-specific streaming logic
- Advanced tool calling transformations
For simple OpenAI-compatible providers, JSON is recommended.
Testing Your Provider​
import litellm
import os
# Set API key
os.environ["YOUR_PROVIDER_API_KEY"] = "your-key"
# Test basic completion
response = litellm.completion(
model="your_provider/model-name",
messages=[{"role": "user", "content": "test"}],
max_tokens=10,
)
print(response.choices[0].message.content)
# Test streaming
response = litellm.completion(
model="your_provider/model-name",
messages=[{"role": "user", "content": "test"}],
stream=True,
)
for chunk in response:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="")
Supported Features​
JSON-configured providers automatically support:
- ✅ Basic completions
- ✅ Streaming
- ✅ Async operations
- ✅ Parameter mapping
- ✅ Environment variable overrides
- ✅ Temperature constraints
- ✅ Content format conversions
File Location​
Config file: litellm/llms/openai_like/providers.json
Add provider: Edit the JSON file and add your configuration under a new key.